Understanding
a Dispersed
System with
an Application
Model

As organizations adopt DevOps, they not only
release smaller changes sooner, but they

also change the way they develop software.
Additionally, applications are no longer seen as
giant monoliths, but rather as dispersed across
dozens of services that may be built on different
platforms (from Node.JS to .NET), depending on
the team and technology-du-jour. To complicate
matters even more, as technology is changing, so
are business requirements.

This is where an Application Model comes in.

It saves time, ensures quality, and increases
organizational knowledge of the application and its
components which are constantly being changed
and rebuilt. This article will explain what an
Application Model is, who is involved in creating
one, and how to start using it.

astah~



WHAT IS AN
APPLICATION
MODEL

The application model is NOT a specific set of UML diagrams
or models used in a direct 1-to-1 relationship with the

code. Rather, it is a high level document that furthers
understanding of the application and helps provide insights
about that application.

The model needs to be approachable to personnel from
many different business roles, including: developers, project
managers, IT administrators, and even end-users. The array
of people who might use the model should give a rough idea
about technical level.

What makes the Application Model so different, so useful,
and so important is that it defines not just the field of the
application but the specific domain, which is also why it can
be called a Domain Model.

In the end, the team gathered will build a complete model
of what the application is and how it currently works. It’s
important that the model being created reflects the actual
application and not an idealized version of it. Because many
business applications are quite large, it often makes sense
to have a broad model for the entire application, and several
more intricate models for specific sections or features.

Lastly, it’s important that the model is reflected in the
codebase for easy understanding by the development

team. If the model is meant to serve as a central hub

for conversations about changing and improving the
application, the decisions and insights found during those
conversations can be relayed and documented for the
development team more easily and much better if there is a
tight relationship between the model and the codebase.



HOW TO CREATE
THE MODEL

As mentioned earlier, the model must be approachable
and understandable to individuals across many different
business roles and with different backgrounds because it
is the thing around which conversations about change and
improvements happen. So, the first logical step in creating
the model is assembling the team.

ENGERT= L

HSSE!‘#?E‘LE e

v

The core team should share several attributes for success.
They should all (no matter their business title) be very
familiar with the application and the current processes; this
is not the place to learn about how things work.

At a minimum, the team should include developers,
operations, and project managers, but knowledgeable end-
users can also be invaluable. Everyone should also be above
average communicators because they will be working to
create understanding with the core team and relaying that
understanding to non-team members.

Once a team has been created, the best start is to talk about
the application itself as it is. The goal is to create a shared
understanding of how the application works and how it’s
being used. Some good starting topics are:

What does it do well, what doesn’t it?

What’s missing from the application?

What’s in the app that’s not being used?

What other applications does this interact with and

which processes?

Is the application being misused (e.g.: a field labeled

one thing used for another)?

What is the process and data flow?

How much overlap is there between data and

objects?

How granular are security requirements?

What are the application deployment specifics?

Which users will need access?

Which APIs will be used?

What are the Performance and Health Monitoring

requirements?




Conversing around a whiteboard is often helpful for quick
sketches and lists that everyone can see. You'll note that
there are both non-technical and semi-technical topics
above, so a good Project Manager who is familiar with both
ends of the application can be invaluable in facilitating
discussion.

As discussions progress (and it will take time), what is being
developed by the modeling group is a shared understanding
of the application, as well as shared knowledge of how to
talk about it. This allows words to be precisely used with the

assurance that everyone on the team is using them in the
same way.

Sometimes this understanding is referred to as a Universal
Language because through questions, miscommunications,
explanations, demonstrations, and discussions, what was
created by the core group is a way to easily and fluently talk
about the application without any misunderstanding.

Using this shared understanding documenting the
application should be achievable. Because the Application
Model isn’t a set series of diagrams or maps, there isn’t a
definitive template for creating one, but many teams have
found that a combination of Data-flow, Activity, Use Case,
Sequence, and Component diagrams are at a high enough
level that everyone can understand and use them, while still
being technical enough to be useful for the development
team. It can also be helpful for text documents of notes,
snippets of sample code, and even photos of whiteboard
drawings to be part of the model.




MODELING FOR
DEVELOPMENT

Of course, a series of diagrams and notes can be messy to
use and organize, so oftentimes, a mind-map can be helpful
as a method of keeping track of the disparate parts and
diagrams, and maintaining ease of use.

Having a model is all well and good, but how does the model
help with development? By defining the application not just
from the developer point-of-view, insights will have been
gained about what needs to be tweaked, what needs a major
overhaul, and what needs to be demolished completely.

By not just knowing what needs to be changed, but why

it’s broken, and what lead to the break makes changing the
software not just an issue on a ticket, but a complete picture.
Also, noting application traits like data overlap, object reuse,
and layers of abstraction allow the core development team
to be able to develop and iterate quickly without worrying
about changing functionality in an unplanned way, thereby
saving on testing time and costs.

Surely, a model is only useful so long as it’s current. Any
changes to the application need to be entered into the
model. An outdated model can be worse than having no
model at all since conversations that occur around it are
started with false data and assumptions. If a model isn’t
maintained, then all of the organizational time and effort
that went into it and shared knowledge it created are lost.




MODELING FOR
OPERATIONS

Maintaining the model is key to ensuring its usefulness
long after it is first ‘complete.” Once a model is created, it
can also be helpful for the members of the modeling team
to present and discuss it with their department coworkers.
Sharing knowledge beyond just a few people ensures

that no matter what personnel changes happen, or what
development trends and methodologies are implemented in
the future, the Model can carry on and maintain usefulness
as a teaching and documentation tool.

As applications and infrastructure become more and more
intertwined, it becomes critical that both Developers and
Operations are involved with creating an application model.
Any changes that will be considered based on the model will
have to take into account things like security, application
monitoring, and the host of other criteria that Ops deals
with.

Operations will be involved in the application development,
either from the start where they can help define practices
and procedures that the development team must follow, or
before the application is released and they raise red flags
and security issues which the development team must
comply with before the changes are released. It’s much
more efficient for them to be involved from the start.

GET MODELING!

Organizations have proprietary software because it is

a competitive advantage for them to create their own
applications based on their business needs. Because business
needs are constantly changing and evolving, the software
that encompasses them must change and adapt, as well.

Finding methods that allow for quicker changes while
ensuring better change quality should be a goal in any
organization. Creating an Application Model, and the shared
understanding that goes with it, can be an invaluable part of
any application that faces maintenance or overhaul.





