
Understanding
a Dispersed
System with
an Application
Model

As organizations adopt DevOps, they not only
release smaller changes sooner, but they
also change the way they develop software.
Additionally, applications are no longer seen as
giant monoliths, but rather as dispersed across
dozens of services that may be built on different
platforms (from Node.JS to .NET), depending on
the team and technology-du-jour. To complicate
matters even more, as technology is changing, so
are business requirements.

This is where an Application Model comes in.
It saves time, ensures quality, and increases
organizational knowledge of the application and its
components which are constantly being changed
and rebuilt. This article will explain what an
Application Model is, who is involved in creating
one, and how to start using it.

ABOUT THE
AUTHOR

Scott Reece is a huge fan

of the greater visibility and

communication enabled

by DevOps. As a Friend

of Astah Scott has been

successfully closing project

communication gaps by

using models and team

building. With more than ten

years of project management

experience, Scott currently

serves as a Partner Director

at Inedo.

The application model is NOT a specific set of UML diagrams

or models used in a direct 1-to-1 relationship with the

code. Rather, it is a high level document that furthers

understanding of the application and helps provide insights

about that application.

The model needs to be approachable to personnel from

many different business roles, including: developers, project

managers, IT administrators, and even end-users. The array

of people who might use the model should give a rough idea

about technical level.

What makes the Application Model so different, so useful,

and so important is that it defines not just the field of the

application but the specific domain, which is also why it can

be called a Domain Model.

In the end, the team gathered will build a complete model

of what the application is and how it currently works. It’s

important that the model being created reflects the actual

application and not an idealized version of it. Because many

business applications are quite large, it often makes sense

to have a broad model for the entire application, and several

more intricate models for specific sections or features.

Lastly, it’s important that the model is reflected in the

codebase for easy understanding by the development

team. If the model is meant to serve as a central hub

for conversations about changing and improving the

application, the decisions and insights found during those

conversations can be relayed and documented for the

development team more easily and much better if there is a

tight relationship between the model and the codebase.

WHAT IS AN
APPLICATION

MODEL

FIELD VS DOMAIN

For example, a core function of banks

is to underwrite loans, but they do

many different types of loans. A field

of underwriting could be as specific as

commercial underwriting for loans over

$5,000,000. This field will have many

similarities no matter the bank because

underwriting is a regulated practice,

therefore the information used to make a

decision is mostly identical.

However, the field isn’t specific enough

to create an application model because

it doesn’t include the unique factors of

a specific bank. Things like the amount

of weight a system gives to any number

of loan factors (credit score, cash on

hand, etc.), processes that are unique

to an individual bank, or even specific

nomenclature that bank uses. All of these

factors go into creating the application

model.

BITE-SIZED CHUNKS

For example, a bank will have different

criteria for commercial underwriting

depending on size, income, and even type

of business. While the overall application

covers all the different types of businesses

being underwritten, different sections

could easily be divided by requirement and

modeled individually as part of the whole.

HOW TO CREATE
THE MODEL

As mentioned earlier, the model must be approachable

and understandable to individuals across many different

business roles and with different backgrounds because it

is the thing around which conversations about change and

improvements happen. So, the first logical step in creating

the model is assembling the team.

The core team should share several attributes for success.

They should all (no matter their business title) be very

familiar with the application and the current processes; this

is not the place to learn about how things work.

At a minimum, the team should include developers,

operations, and project managers, but knowledgeable end-

users can also be invaluable. Everyone should also be above

average communicators because they will be working to

create understanding with the core team and relaying that

understanding to non-team members.

Once a team has been created, the best start is to talk about

the application itself as it is. The goal is to create a shared

understanding of how the application works and how it’s

being used. Some good starting topics are:

• What does it do well, what doesn’t it?

• What’s missing from the application?

• What’s in the app that’s not being used?

• What other applications does this interact with and

 which processes?

• Is the application being misused (e.g.: a field labeled

 one thing used for another)?

• What is the process and data flow?

• How much overlap is there between data and

 objects?

• How granular are security requirements?

• What are the application deployment specifics?

• Which users will need access?

• Which APIs will be used?

• What are the Performance and Health Monitoring

 requirements?

COMMUNICATION
MATTERS

Communication is an extremely important

skill for any member of the model

team to have. For example, there could

be an incredibly gifted developer who

has vast knowledge of the application

being modeled, but who speaks the

local language as a second language

and without advanced, and nuanced

proficiency. This is fine when changes

that they are working on are documented

through a ticket system and can be

understood by reading the ticket and

looking at the codebase; however, it’s not

appropriate for the modeling team.

At best, that developer will slow down

the entire modeling process because they

will have to ask many questions to fully

understand what is being said by non-

developers. At worst, that developer will

not ask questions to get the understanding

needed, and therefore will not be able to

share their insights with the modeling

team nor adequately explain the model to

fellow developers.

Conversing around a whiteboard is often helpful for quick

sketches and lists that everyone can see. You’ll note that

there are both non-technical and semi-technical topics

above, so a good Project Manager who is familiar with both

ends of the application can be invaluable in facilitating

discussion.

As discussions progress (and it will take time), what is being

developed by the modeling group is a shared understanding

of the application, as well as shared knowledge of how to

talk about it. This allows words to be precisely used with the

assurance that everyone on the team is using them in the

same way.

Sometimes this understanding is referred to as a Universal

Language because through questions, miscommunications,

explanations, demonstrations, and discussions, what was

created by the core group is a way to easily and fluently talk

about the application without any misunderstanding.

Using this shared understanding documenting the

application should be achievable. Because the Application

Model isn’t a set series of diagrams or maps, there isn’t a

definitive template for creating one, but many teams have

found that a combination of Data-flow, Activity, Use Case,

Sequence, and Component diagrams are at a high enough

level that everyone can understand and use them, while still

being technical enough to be useful for the development

team. It can also be helpful for text documents of notes,

snippets of sample code, and even photos of whiteboard

drawings to be part of the model.

MISCOMMUNICATION

For example, if an underwriter who

works on business loans was describing

the process to a group modeling an

underwriting application, they might

inform the group that a credit rating

is one of the factors that is used in

determining loan worthiness and needs

to be recorded in the application. Credit

ratings are something that everyone who

has ever had a credit card, home loan,

or even auto insurance is familiar with.

However, it also presents an opportunity

for Miscommunication.

Individual loans (for things like a

mortgage) use a credit rating score that

can go up to 850. A developer might know

this from personal experience and create

a field on in the application to record a

credit score. Restraints on the field could

be numeric only, with a range of 300 to

850 (this would help ensure that only valid

scores were entered). However, businesses

are given credit ratings with letters and

symbols—not numbers—like AAA.

In this example, if there were no follow-

up questions and no examples used even

though multiple people on the team

were using the same term and thought

they were using it correctly, there is still

miscommunication which would result in

an error in the final software that would

then need to be fixed.

Of course, a series of diagrams and notes can be messy to

use and organize, so oftentimes, a mind-map can be helpful

as a method of keeping track of the disparate parts and

diagrams, and maintaining ease of use.

Having a model is all well and good, but how does the model

help with development? By defining the application not just

from the developer point-of-view, insights will have been

gained about what needs to be tweaked, what needs a major

overhaul, and what needs to be demolished completely.

By not just knowing what needs to be changed, but why

it’s broken, and what lead to the break makes changing the

software not just an issue on a ticket, but a complete picture.

Also, noting application traits like data overlap, object reuse,

and layers of abstraction allow the core development team

to be able to develop and iterate quickly without worrying

about changing functionality in an unplanned way, thereby

saving on testing time and costs.

Surely, a model is only useful so long as it’s current. Any

changes to the application need to be entered into the

model. An outdated model can be worse than having no

model at all since conversations that occur around it are

started with false data and assumptions. If a model isn’t

maintained, then all of the organizational time and effort

that went into it and shared knowledge it created are lost.

MODELING FOR
DEVELOPMENT

MODELING TO SAVE TIME

For example, if a new federal regulation

were introduced, and several new pieces

of information had to be logged for loans

of a specific size (or greater), the domain

model might show:

• That some information was

 already being collected and only

 needed minor updates.

• None of the information was being

 collected at that size loan; but

 it was for a different size, and that

 function could easily be added to

 that section of the application.

• That data wasn’t being

 collected on loans of any size,

 and a conversation might ensue to

 determine if it was worth

 including the same data

 requirements on loans other than

 newly regulated.

• That information could be

 calculated based on existing

 procedures and would only need to

 be accurately logged and kept.

Maintaining the model is key to ensuring its usefulness

long after it is first ‘complete.’ Once a model is created, it

can also be helpful for the members of the modeling team

to present and discuss it with their department coworkers.

Sharing knowledge beyond just a few people ensures

that no matter what personnel changes happen, or what

development trends and methodologies are implemented in

the future, the Model can carry on and maintain usefulness

as a teaching and documentation tool.

As applications and infrastructure become more and more

intertwined, it becomes critical that both Developers and

Operations are involved with creating an application model.

Any changes that will be considered based on the model will

have to take into account things like security, application

monitoring, and the host of other criteria that Ops deals

with.

Operations will be involved in the application development,

either from the start where they can help define practices

and procedures that the development team must follow, or

before the application is released and they raise red flags

and security issues which the development team must

comply with before the changes are released. It’s much

more efficient for them to be involved from the start.

Organizations have proprietary software because it is

a competitive advantage for them to create their own

applications based on their business needs. Because business

needs are constantly changing and evolving, the software

that encompasses them must change and adapt, as well.

Finding methods that allow for quicker changes while

ensuring better change quality should be a goal in any

organization. Creating an Application Model, and the shared

understanding that goes with it, can be an invaluable part of

any application that faces maintenance or overhaul.

MODELING FOR
OPERATIONS

GET MODELING!

DESIGNING CHANGES
WITH DEVS AND OPS

When evaluating an organization for a

loan, the credit rating of that organization

will need to be acquired. There are vendors

that perform the task of rating other

organizations, and individual banks will

have preferred vendors for that metric.

If the task of gathering these ratings

were to be automated, a developer might

want to implement a simple process

where the application queries the vendor

through their API and waits for a reply.

This is simple, straightforward, and only

requires two pieces of data: the query and

the report. However, Operations would

certainly step in because this scenario

would be a security risk. It would either

involve two-way communication, or

require leaving the communication

channel open for an extended period of

time.

A better solution that could be created

with input from operations might involve

an additional piece of data: a query ID. The

interaction would then consist of multiple

steps such as a query being made, a query

ID getting returned, and then, at regular

intervals, the vendor being sent the query

ID until the report is ready.

